Hamiltonian decompositions of complete k-uniform hypergraphs
نویسندگان
چکیده
Using a generalisation of Hamiltonian cycles to uniform hypergraphs due to Katona and Kierstead, we define a new notion of a Hamiltonian decomposition of a uniform hypergraph. We then consider the problem of constructing such decompositions for complete uniform hypergraphs, and describe its relationship with other topics, such as design theory.
منابع مشابه
Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles
Using the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph, we continue the investigation of the existence of a decomposition of the complete 3-uniform hypergraph into Hamiltonian cycles began by Bailey and Stevens. We also discuss two extensions of the problem: to the complete 3-uniform hypergraph from which a parallel class of triples has been removed, and to the com...
متن کاملHamilton cycle decompositions of k-uniform k-partite hypergraphs
Let m ≥ 2 and k ≥ 2 be integers. We show that K k×m has a decomposition into Hamilton cycles of Kierstead-Katona type if k | m. We also show that K (3) 3×m − T has a decomposition into Hamilton cycles where T is a 1-factor if and only if 3 m and m = 4. We introduce a notion of symmetry and comment on the existence of symmetric Hamilton cycle decompositions of K (k) k×m.
متن کاملOn decompositions of complete hypergraphs
We study the minimum number of complete r-partite r-uniform hypergraphs needed to partition the edges of the complete r-uniform hypergraph on n vertices and we improve previous results of Alon.
متن کاملFractional clique decompositions of dense graphs and hypergraphs
Our main result is that every graph G on n ≥ 10r vertices with minimum degree δ(G) ≥ (1−1/10r)n has a fractional Kr-decomposition. Combining this result with recent work of Barber, Kühn, Lo and Osthus leads to the best known minimum degree thresholds for exact (non-fractional) F -decompositions for a wide class of graphs F (including large cliques). For general k-uniform hypergraphs, we give a ...
متن کاملOn hamiltonian chain saturated uniform hypergraphs
We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamiltonian chain but by adding any new edge we create a hamiltonian chain in H. In this paper we ask about the smallest size of a k-uniform hamiltonian chain saturated hypergraph. We present a construction of a family of k-uniform hamiltonian chain saturated hypergraphs with O(nk−1/2) edges.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010